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Abstract. This paper discusses theory and results on 1P0 doubly excited states (DES) in He and in H− of
very high excitation, up to the N = 25 manifold. Our calculations employed full configuration interaction
(CI) with large hydrogenic basis sets and produced correlated wavefunctions for the four lowest roots at
each hydrogenic manifold by excluding open channels and the small contribution of series belonging to
lower thresholds. The suitability of the hydrogenic basis sets for such calculations is justified, apart from
their practicality, by the fact that, by computing from them natural orbitals, the results were shown to be
the same with those of earlier multiconfigurational Hartree-Fock (MCHF) calculations on low-lying DES.
In total, 160 states were computed, most of them for the first time. Their energy spectrum should be of
use to possible future photoabsorption experiments. For certain low-lying DES up to N = 13, for which
previous reliable results are available, comparison of the calculated energies shows good agreement. The
correlated wavefunctions contain systematically chosen single and double excitations from each hydrogenic
manifold of interest. From their analysis, we determined the “goodness” of different quantum numbers
and the geometry (average angles and radii) as a function of excitation. For the Sinanoğlu-Herrick (K,T )
classification scheme, whose basis is a restricted CI with hydrogenic functions and which has thus far been
tested only on low-lying DES, we established that, whereas T remains a good index as energy increases,
K does not. Consequently, a more flexible than K quantum number is needed in order to account for
most of the additional correlation. This number, represented by F = N − K − 1, where N and K are
not good numbers anymore, produces consistently a much higher degree of purity than the (K,T ) scheme
does, especially as N increases and as the relative significance of various virtual excitations due to electron
correlation increases. Among the four states of each manifold, in all cases in H− and in most cases in
He, the three are of the intrashell type and one is of the intershell type with (F, T ) = (0, 0). The lowest
intrashell states and the lowest intershell states exhibit a wide angle geometry tending to 180◦ as N →∞.

PACS. 31.25.Jf Electron correlation calculations for atoms and ions: excited states – 31.50.Df Potential
energy surfaces for excited electronic states – 31.15.Ar Ab initio calculations – 32.80.Dz Autoionization

1 High-lying doubly excited states

Within the single configuration approximation of the shell
model, the excitation of two electrons of an atom into
the localized part, Ψ0, of a doubly excited state (DES)
with or without a core, can be represented by a wave-
function, which is a superposition of bound configurations.
As with every electronic structure calculation, the rate of
convergence to the solution of the Schrödinger equation
depends on the combined choices of the type of the ra-
dial parts of the orbitals, and of the type and number of
the two-electron configurations (in the field of the core – if
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present). The length and complexity of this superposition,
which is the result of electron correlation (EC), increase
rapidly with excitation energy because of a variety of near-
degeneracies.

The excitation energy to which we refer here is the
one that involves the excitation of both electrons, as the
energy of the DES approaches the two-electron ionization
threshold (TEIT), and not that involving only one elec-
tron as it is excited toward the one-electron ionization
(detachment) threshold of a particular channel. A good
index for marking the gross magnitude of this type of ex-
citation is the value of the smaller of the two hydrogenic
principal quantum numbers characterizing the zero order
description. It is denoted by N . With respect to each N ,
we can divide the zero order configurations into intrashell,
(Nl1, n2l2), if N = n1 = n2, into intershell, (Nl1, n2l2),
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if n1 = N < n2, and into doubly excited, (n′1l1, n
′
2l2), if

n′1 > n1 and n′2 > n2. Each localized correlated wavefunc-
tion of a DES is a superposition of these configurations
for all values of the hydrogenic numbers prescribed by the
theory. We write the corresponding wavefunction as Ψv.

The large variety of mixing configurations leads to a
multitude of possible valid solutions Ψv representing DES.
In principle, the results of this large number of possible su-
perpositions are complex spectral features. It is reasonable
to expect that theoretical efforts should aim at extracting
certain regularities of the energy spectrum and of other
properties out of this complexity. The present theory and
calculations constitute a contribution to this purpose.

As already stated, the length and complexity of each
such superposition increases rapidly with N . It is for this
reason that the available data are from computations for
low N , where “low” is qualified below. These data have
already led to certain conclusions about regularities, as N
increases, in the wavefunctions, energies and widths of a
class of states of DES consisting of the states of lowest en-
ergy at each manifold N [1–4]. However, in order to truly
establish these regularities in a quantitative way and to
provide additional understanding in the continuing explo-
ration of electron correlations in such states, it is desirable
to investigate parts of the spectrum for larger values of N ,
where much more complex situations of possible mixings
of configurations and of perturbed spectra ought to exist.
Furthermore, in doing so, it is also desirable to calculate
not only the lowest energy state of each intrashell man-
ifold, but a few of them, in order to obtain information
on the properties of groups of such states and on their
behaviour with increasing N , as they reach the infinitely
degenerate E = 0 state.

Such a desideratum has made matters for experimental
and theoretical spectroscopy rather difficult, even in the
simplest of atoms, H− and He, as soon as N reaches values
around 10–15. It is then natural to ask the question of how
to solve the problem of the determination and interpre-
tation of accurate wavefunctions and of the concomitant
properties for values of N higher than 10–15. It is this
question that has led some researchers on the one hand to
express rather pessimistic remarks about the treatment of
electron correlation in DES by configuration-interaction
(CI)-type methods and on the other hand to argue in fa-
vor of formalisms based on collective coordinates (with-
out this meaning that such calculations have indeed been
achieved) (e.g., [5–10]). For example, Zhang and Rau ([6],
p. 6934), before presenting their electron-pair analysis for
obtaining information on the ridge states, write: “Strong
two-electron correlations lead to large mixings and, given
the diverging number of Coulomb states with increasing
excitation, these calculations, (close-coupling method or
configuration interaction), become impractical for the high
doubly excited states”.

It is not clear from [6] to which level of excitation “high
doubly excited state” refers. Here, in a somewhat arbitrary
fashion, which, however, has to do with the existing liter-
ature on DES, (to the best of our knowledge), and with
changes in the level of difficulty of computation, we will

refer to DES of H− and He with N ≤ 15 as low-lying and
those above as high-lying. The present results pertain to
both regimes.

Even for low-lying DES, only a few calculations have
reached the excitation energies between N = 10 and
N = 15 [1–4,6–10]. For example, using the method of
hyperspherical coordinates in the adiabatic approximation,
Sadeghpour [7] calculated the energies of 1P0 DES of He
up to n = 10 and of H− up to n = 12. Rost and Briggs [10]
implemented their adiabatic molecular orbital theory and
obtained energies for He and H− DES of 1S and 1P0 sym-
metries up to n = 10–13. Komninos et al. [3], published in
a preliminary report the essential results of CI calculations
on DES of H−, He and Li+ for 1S and 1P0 symmetries, ob-
tained from fully correlated wavefunctions with one- and
two-electron excitations at each manifold, up to N = 15.
These wavefunctions were then used to analyze proper-
ties of these states. This is the approach that we have
followed in this work, where we have determined the cor-
related wavefunctions and various properties of the lowest
four DES at each manifold, up to N = 25.

One of the basic reasons for the lack of reliable data on
DES of the high regime is the associated computational
complexity and the associated difficulty in developing and
applying an appropriate theoretical approach. Yet, this
part of the spectrum of DES is one of the intriguing fron-
tiers of atomic spectroscopy, which have remained outside
the reach of experiment and which can serve as grounds for
the continuing testing of the methods of computation of
atomic structure, of electron correlation and of properties
in excited states. Now, apart from the enormous size of
hydrogenic degeneracies at each N manifold, there is en-
tanglement of the N manifolds with channels represented
by n2 > n1 configurations, as well as increasing proximity
among the N manifolds themselves. Therefore, the prob-
lem has to be understood reasonably well, theoretically
as well as numerically, so that it can be formulated and
solved in a practical way. Another reason for the impor-
tance of the high regime is because, in principle, accurate
wavefunction and spectral information can be used as ref-
erence for the evaluation of semiclassical calculations and
interpretations (e.g., [11–13]).

The work whose results we present here has dealt with
low- as well as high-lying N -manifold DES of 1P0 sym-
metry, (an experimentally reachable symmetry from the
ground state), in H− and He, up to N = 25. In total,
160 states were computed, most of them for the first time.
Numerical results for all of them are reported − rather
than for selected few − since we think that all of them
and each one individually may prove useful to future the-
oretical and experimental investigations.

The calculations were of the CI-type. They were man-
aged successfully by utilizing our earlier experience with
basis functions and magnitudes of interaction matrix ele-
ments, by improving the numerical techniques and by tak-
ing advantage of the availability of the necessary computer
power. The value of N = 25 was deemed sufficient for al-
lowing substantial analysis and for drawing generally valid
conclusions about the feasibility of computing ab initio
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DES of very high N and about the properties of the low-
est few intrashell states of each manifold. These properties
include their energies, their geometries, their wavefunction
CI characteristics and their labeling by “quasi-good” quan-
tum numbers. The corresponding levels of excitation are
0.029 eV below the TEIT of H−, which is at 14.3530 eV,
(1 a.u. (H−) = 27.1966 eV), and 0.143 eV below that of
He, which is at 79.004 eV (1 a.u. (He) = 27.2077 eV). The
choice of the two atomic species, H− and He, was based
on the known facts about the differences in the strength
and type of their potentials and in the relative significance
of electron correlation, which changes considerably from
Z = 2 to Z = 1.

2 Brief review of results on doubly excited
states relevant to this work

The focus of this work was the class of DES that can
be identified as intrashell states for each manifold defined
by N . As we shall recall below, the lowest state for each
N is always of the intrashell type with special properties.
Having understood how to compute them systematically,
in this work we applied practical methods for the calcula-
tion and analysis of DES which correspond not only to the
lowest energy of their symmetry at each manifold N but
to the first few, (four in this case), energies. Apart from
energies, we aimed at determining possible regularities in
their character and in their geometrical features.

Aspects of the background to such calculations are
summarized below.

Fano’s review [5] on the “correlations of two excited
electrons” reported on advances that had occurred over
the previous twenty years. Special attention was given to
descriptions in terms of collective coordinates and to the
related elementary phenomenology of intrashell DES pos-
sibly connected to the physics of the two-electron ioniza-
tion at threshold. At that time, the quantum mechanical
analysis of the wavefunctions and properties of DES as
they change with N , lacked quantitative support. There-
fore, discussions on the “Wannier ridge states”, the prop-
erties of which are also discussed in the present paper,
did not include quantitative predictions of measurable
properties and were by necessity based on scarce semi-
quantitative data and on hypothesis.

The first systematic quantum mechanical calculations
and analysis of the properties of intrashell DES of 1P0

symmetry in H−, He and Li+ along the N manifolds, (up
to N = 10), were presented a few years after Fano’s re-
view [1,2,14]. They were based on CI-type schemes and
produced reliable information and conclusions which have
been of use in subsequent work. For example, Komninos
and Nicolaides [1,2] published energies, wavefunction
characteristics, geometrical properties and absorption os-
cillator strengths up to N = 10, for the lowest energy in-
trashell state at eachN manifold. Robaux [14] provided an
analysis of DES wavefunctions for He up toN = 6 in terms
of the (K,T ) scheme of Sinanoğlu and Herrick [15,16] and
discussed aspects of the properties of Rydberg series of

“ridge states” and of the interaction between states be-
longing to different N manifolds. Calculation of the 1P0

DES and of properties along the N manifolds were later
also produced by the application of methods using collec-
tive coordinates [6–10].

One of the aims of the work that led to [1,2] was to
demonstrate the possibility of computing correlated wave-
functions for various manifolds N , (at the time, N = 10
was numerically possible and sufficient for the purposes),
in terms of suitably chosen zero order and correlation con-
figurations, consisting of numerical self-consistent orbitals
and of analytic virtual orbitals. As a result, it became pos-
sible to identify eigenfunctions, which have certain regular
properties as excitation increases toward the TEIT. These
states were named the Wannier two-electron ionization
ladder (TEIL) states [1,2]. Their existence had been hy-
pothesized in the early 1980’s as the natural extension be-
low the TEIT of the Wannier classical state at E = 0, with
related descriptions in terms of hyperspherical coordinates
(hsc) [5,17,18]. They were named Wannier ridge states,
where the Wannier ridge is defined classically by r1 = r2
and θ12 = π. Given this classically conceived special class
of DES, arguments about the stability of these states were
advanced, without quantum mechanical computation of
their decay widths. For example, Rau [17], in his discus-
sion of the spectrum of the He− 2S resonances measured
by Buckman et al. [18], concludes: “...This makes the ac-
cess to these states difficult and conversely, once accessed,
makes for their long stability”. However, if we take from
the literature of DES accurate results on widths and iso-
late those of lowest energy at each N -manifold, we see
that, in fact, the Wannier ridge states have no distinct
and/or systematic stability toward autoionization as com-
pared with other DES. This is evident from quantum me-
chanical results on H− and He as well as on He−. For
example, a look at Table 1 of [19], exhibiting the widths
of He− 4P DES, shows that, of the computed DES associ-
ated with each He 1snp 3P0 threshold, the lowest energy
state is the least stable. On the other hand, the stability
toward autoionization of each such state increases with
N [4,19].

The application of CI-type methods with judiciously
chosen and optimized function spaces, has revealed physi-
cally relevant properties of the TEIL states quantum me-
chanically, [1–4] and references therein. Apart from the
energies and the demonstration of their regularity with N ,
a fact which allows reasonably accurate extrapolations to
very high N based on spectral formulae, critical informa-
tion about wavefunction characteristics and partial widths
has been obtained. For example, it was found quantita-
tively how the main configurational constitution of each
TEIL state changes as N increases. This feature was com-
puted for a number of symmetries. For the 1P0 symmetry
which is of interest here, it was determined that for He,
although for the TEIL state of N = 3 the (3s3p) config-
uration dominates, starting already at N = 4 the (4p4d)
configuration dominates, while at N = 10 the (10d10f)
configuration takes over, with a coefficient 0.6014 ([2],
Tab. 3). It follows that discussions about such series of
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Table 1. He 1P0 doubly excited states up to N = 25, according to the approach of this paper. The four lowest localized
solutions at each manifold N were obtained. The majority of these states were computed in this work for the first time. Labels,
energies, angles and degree of purity of states in the Herrick-Sinanoğlu (K,T ) scheme and in the (F, T ) scheme are given. The
lowest one at each N is a Wannier TEIL state. For the T = 1 states, the higher ones have smaller angles for all N , reflecting
the progressive reduction of electron correlation effects.

N(F, T )An E (a.u.) 〈θ12〉 P (KT ) P (FT )

N = 6 1P0(1) 6 (1, 1)+
6 −0.089021 130.2 0.997 0.997

1P0(2) 6 (3, 1)+
6 −0.085019 112.1 0.981 0.983

1P0(3) 6 (5, 1)+
6 −0.079875 99.0 0.919 0.928

1P0(4) 6 (0, 0)−7 −0.079599 147.0 0.997 0.999

N = 7 1P0(1) 7 (1, 1)+
7 −0.065903 134.4 0.997 0.998

1P0(2) 7 (3, 1)+
7 −0.063569 117.6 0.984 0.986

1P0(3) 7 (5, 1)+
7 −0.060682 105.4 0.935 0.943

1P0(4) 7 (0, 0)−8 −0.059602 149.7 0.997 0.999

N = 8 1P0(1) 8 (1, 1)+
8 −0.050743 137.7 0.997 0.998

1P0(2) 8 (3, 1)+
8 −0.049271 122.1 0.984 0.987

1P0(3) 8 (5, 1)+
8 −0.047501 110.6 0.943 0.951

1P0(4) 8 (0, 0)−9 −0.046322 151.8 0.996 0.999

N = 9 1P0(1) 9 (1, 1)+
9 −0.040271 140.4 0.997 0.998

1P0(2) 9 (3, 1)+
9 −0.039286 125.8 0.984 0.987

1P0(3) 9 (5, 1)+
9 −0.038129 114.9 0.947 0.955

1P0(4) 9 (0, 0)−10 −0.037047 153.6 0.995 0.999

N = 10 1P0(1) 10 (1, 1)+
10 −0.032737 142.8 0.996 0.998

1P0(2) 10 (3, 1)+
10 −0.032048 129.0 0.983 0.987

1P0(3) 10 (5, 1)+
10 −0.031252 118.5 0.948 0.956

1P0(4) 10 (7, 1)+
10 −0.030330 110.3 0.872 0.885

N = 11 1P0(1) 11 (1, 1)+
11 −0.027136 144.7 0.995 0.998

1P0(2) 11 (3, 1)+
11 −0.026636 131.7 0.982 0.987

1P0(3) 11 (5, 1)+
11 −0.026067 121.7 0.948 0.956

1P0(4) 11 (7, 1)+
11 −0.025417 113.8 0.877 0.890

N = 12 1P0(1) 12 (1, 1)+
12 −0.022860 146.5 0.994 0.997

1P0(2) 12 (3, 1)+
12 −0.022486 134.0 0.980 0.986

1P0(3) 12 (5, 1)+
12 −0.022066 124.5 0.946 0.955

1P0(4) 12 (7, 1)+
12 −0.021592 116.9 0.879 0.892

N = 13 1P0(1) 13 (1, 1)+
13 −0.019522 148.0 0.993 0.997

1P0(2) 13 (3, 1)+
13 −0.019235 136.1 0.978 0.985

1P0(3) 13 (5, 1)+
13 −0.018916 127.0 0.943 0.954

1P0(4) 13 (7, 1)+
13 −0.018560 119.6 0.878 0.892

N = 14 1P0(1) 14 (1, 1)+
14 −0.016865 149.3 0.992 0.997

1P0(2) 14 (3, 1)+
14 −0.016641 137.9 0.976 0.983

1P0(3) 14 (5, 1)+
14 −0.016394 129.2 0.940 0.951

1P0(4) 14 (7, 1)+
14 −0.016120 122.0 0.875 0.890

N = 15 1P0(1) 15 (1, 1)+
15 −0.014717 150.6 0.990 0.996

1P0(2) 15 (3, 1)+
15 −0.014539 139.6 0.973 0.982

1P0(3) 15 (5, 1)+
15 −0.014343 131.2 0.936 0.949

1P0(4) 15 (7, 1)+
15 −0.014129 124.2 0.871 0.887

N = 16 1P0(1) 16 (1, 1)+
16 −0.012955 151.6 0.988 0.996

1P0(2) 16 (3, 1)+
16 −0.012811 141.1 0.970 0.980

1P0(3) 16 (5, 1)+
16 −0.012654 132.9 0.932 0.946

1P0(4) 16 (7, 1)+
16 −0.012483 126.2 0.866 0.883
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Table 1. Continued.

N(F, T )An E (a.u.) 〈θ12〉 P (KT ) P (FT )

N = 17 1P0(1) 17 (1, 1)+
17 −0.011492 152.6 0.987 0.995

1P0(2) 17 (3, 1)+
17 −0.011374 142.4 0.967 0.979

1P0(3) 17 (5, 1)+
17 −0.011246 134.6 0.927 0.942

1P0(4) 17 (7, 1)+
17 −0.011107 128.0 0.861 0.879

N = 18 1P0(1) 18 (1, 1)+
18 −0.010264 153.5 0.985 0.995

1P0(2) 18 (3, 1)+
18 −0.010166 143.7 0.963 0.977

1P0(3) 18 (5, 1)+
18 −0.010061 136.0 0.922 0.939

1P0(4) 18 (7, 1)+
18 −0.009947 129.7 0.854 0.874

N = 19 1P0(1) 19 (1, 1)+
19 −0.009223 154.4 0.983 0.994

1P0(2) 19 (3, 1)+
19 −0.009141 144.8 0.960 0.975

1P0(3) 19 (5, 1)+
19 −0.009053 137.4 0.917 0.935

1P0(4) 19 (7, 1)+
19 −0.008958 131.2 0.848 0.868

N = 20 1P0(1) 20 (1, 1)+
20 −0.008333 155.1 0.980 0.994

1P0(2) 20 (3, 1)+
20 −0.008264 145.9 0.956 0.973

1P0(3) 20 (5, 1)+
20 −0.008189 138.7 0.911 0.931

1P0(4) 20 (7, 1)+
20 −0.008110 132.7 0.841 0.863

N = 21 1P0(1) 21 (1, 1)+
21 −0.007566 155.8 0.978 0.993

1P0(2) 21 (3, 1)+
21 −0.007507 146.8 0.952 0.971

1P0(3) 21 (5, 1)+
21 −0.007444 139.8 0.906 0.927

1P0(4) 21 (7, 1)+
21 −0.007377 134.0 0.834 0.857

N = 22 1P0(1) 22 (1, 1)+
22 −0.006900 156.5 0.976 0.993

1P0(2) 22 (3, 1)+
22 −0.006850 147.7 0.949 0.969

1P0(3) 22 (5, 1)+
22 −0.006796 140.9 0.900 0.923

1P0(4) 22 (7, 1)+
22 −0.006738 135.2 0.826 0.851

N = 23 1P0(1) 23 (1, 1)+
23 −0.006319 157.1 0.973 0.992

1P0(2) 23 (3, 1)+
23 −0.006275 148.5 0.945 0.967

1P0(3) 23 (5, 1)+
23 −0.006229 141.9 0.894 0.920

1P0(4) 23 (7, 1)+
23 −0.006179 136.3 0.819 0.845

N = 24 1P0(1) 24 (1, 1)+
24 −0.005808 157.6 0.971 0.992

1P0(2) 24 (3, 1)+
24 −0.005770 149.3 0.941 0.965

1P0(3) 24 (5, 1)+
24 −0.005730 142.8 0.888 0.916

1P0(4) 24 (7, 1)+
24 −0.005687 137.4 0.811 0.839

N = 25 1P0(1) 25 (1, 1)+
25 −0.005357 158.2 0.968 0.991

1P0(2) 25 (3, 1)+
25 −0.005324 150.1 0.937 0.964

1P0(3) 25 (5, 1)+
25 −0.005288 143.7 0.883 0.912

1P0(4) 25 (7, 1)+
25 −0.005251 138.4 0.803 0.833

states which have used only one configuration as a con-
stant zero order label, (e.g. use of (core) Ns2 for deducing
semiemprirical formulae for 1S states), have an unjustifi-
able zero order reference point. In fact, for these states,
the zero order description is by necessity multiconfigura-
tional, with the mixing coefficients changing with N and
leading to different dominant configurations already in the
regime of low − lying DES.

Once fully correlated CI-type wavefunctions for DES
have been calculated, appropriate computations can ob-
tain information about geometry, classification, nodal

structure and other properties, [1–4] and references
therein. For example, conditional probability plots and
conditional expectation values showed that the lowest en-
ergy intrashell state at each N manifold of the low-regime
has the quantum mechanical property that 〈r1〉 is close to
〈r2〉|r1=〈r1〉 (see Eq. (10)). The relation 〈r1〉 = 〈r2〉|r1=〈r1〉
is the analogue of the Wannier classical condition r1 = r2
at E = 0.

In Section 4, we present systematic results of 〈r1〉 and
〈r2〉|r1=〈r1〉 for the lowest four energy states at each N , up
to N = 25.
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Calculations were also done for θ12, the angle between
the two radius vectors, of the lowest energy intrashell
state at each N in the low regime. It was found that
this angle starts rather far from the Wannier ridge con-
dition, θ12 = 180◦, and tends very slowly to 180◦ as
N → ∞, i.e. as the mixing of configurations increases.
This is a result, which is predicted by the restricted-space
model and analysis of Herrick, Kellman and Poliak [20,21]
and which is further examined quantitatively in the
present paper. It is significant to add here that similarly
smooth and excitation-dependent geometrical properties
were identified and analyzed by state-specific calculations
on hyper-ridge ladders of triply [22] and quadruply [23] ex-
cited states leading to their corresponding fragmentation
thresholds.

The theory of [1–4] employed state-specific configura-
tions and well-optimized orbitals for the intrashell multi-
configurational (MC) zero order description and for the
one- and two-electron correlation functions. The zero or-
der orbitals are either MC Hartree-Fock (MCHF) or nat-
ural orbitals, the latter having been shown [3] to produce
the same results while they are directly computable from
hydrogenic CI. The approach based on zero order natural
orbitals for the intrashell configurations was developed [3]
in order to bypass the numerical bottlenecks, which exist
when requiring the calculation of accurate state-specific
numerical MCHF wavefunctions for N in the high regime.
Once the zero order MCHF orbital space is available, the
correlation orbitals are expressed in terms of Slater-type
orbitals (STO), which are optimized during the minimiza-
tion of the total energy subject to appropriate orthogonal-
ity conditions [1,2].

We point out that the structure of the state-specific ap-
proach to the quantitative understanding of the DES, and
of multiply excited states in general, is such that polyelec-
tronic atoms can be treated systematically. Specifically,
the fact that at least in the low regime it is possible to
obtain MCHF solutions, albeit with difficulty and after
considerable experience, permits the calculation of DES
where a closed or an open-shell electron core is present
and is allowed to interact self-consistently with the valence
electrons. Of course, as the manifold index N increases,
the core-valence coupling decreases rapidly and the spec-
trum is dominated by the self-consistent correlated motion
of just the pair of excited electrons [24].

The possibility of obtaining ab initio fully correlated
wavefunctions of intrashell DES for each manifold N and
of identifying the TEIL state as that with the lowest
energy at each N , has also allowed the calculation of
properties previously discussed in the context of either
semiclassical frameworks or model quantum mechanical
function spaces. Specifically, the quantum mechanical cal-
culations of Nicolaides and Komninos [25] produced num-
bers for the N -dependence of the partial width to the
ground state channel of the H− TEIL states of 1S symme-
try, which could be compared with the formulae obtained
earlier semiclassically. They found Γ (N) ∼ N−6.8±0.4,
where the uncertainty was estimated from the possible
errors in the overall calculation. More recent calculations

by Heim and Rau [26], using hyperspherical coordinates,
produced Γ (N) ∼ N−6.5.

The degree of “goodness” of new quantum numbers

Finally, another set of results contributing to the quan-
titative understanding of the N -dependence of proper-
ties of intrashell DES is to be found in the study of
Komninos et al. [3] on the degree of goodness of the
Sinanoğlu-Herrick [15,16] (K,T ) scheme of labeling DES
of two-electron atoms, and on the therein proposed (F, T )
scheme, where F is a combination of N and K, neither of
which is now a “good” quantum number. Specifically,

F = N − 1−K (1)

where K goes from −N − 1 − T to N − 1 − T , in steps
of 2.

As we pointed out in [3], F is numerically the same
quantity as v, the number of bending quanta in the lin-
ear rotor-vibrator picture of DES introduced in [20,21].
(see also [27]). However, the connection stops here, since
the combination of N and K in (1) is used in [20,21,27]
only formally and descriptively, assuming that K and N
are “good” numbers. In fact, it is the recognition that
this combination expresses to a very good approximation
the fully correlated wavefunctions of DES, contrary to the
(K,T ) scheme, that distinguishes the definition and quan-
titative use of v in [20,21,27] from that of F in [3] and in
the present work. At the same time, the finding that F is a
rather good number lends support to the molecular mod-
els of Herrick and Kelmann [20] and of Feagin, Rost and
Briggs [10]. These authors have assumed an approximate
decoupling of a transformed two-electron Hamiltonian, ac-
cording to which v is a good number.

It was found in [3], and is confirmed in the present
work, that even for the TEIL states, which are rather dis-
tinct from the other types of superpositions, the F, T clas-
sification gives “purer” vectors. For example, as shown in
Table 2 of this paper, for the (N = 25, n2 = 25) TEIL
1P0 state in H−, the purity for (K,T ) is 0.845 whereas
that for (F, T ) is 0.975. This type of discrepancy is re-
duced as Z increases, ([3] and this work), because the
origin of the (K,T ) scheme lies with the O(4) group prop-
erties of the Coulomb potential and with the use of the
restricted model space of only intrashell configurations
with hydrogen orbitals, named the doubly excited symme-
try basis (DESB) [15,16,21]. Therefore, even for the low-
est energy state where the angular correlation dominates,
the degree of deterioration of the goodness of N and K
can be uncovered systematically by obtaining the full elec-
tron correlation for increasing values of N and decreasing
binding to the nucleus. In this context, we stress that the
correct and meaningful way of extracting the (K,T ) con-
tent from well-correlated wavefunctions, is the projection
onto the DESB. In some ab initio investigations of DES,
this is indeed what has been done, [3,14,27]. However,
in other works, (e.g., [29,30]), this classification is done
only by conjecture. In addition to lack of rigor, given the
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Table 2. As in Table 1, for H−. The intershell state, T = 0, remains as one of the four lowest states up to N = 25.

N(F, T )An E (a.u.) 〈θ12〉 P (KT ) P (FT )

N = 6 1P0(1) 6 (1, 1)+
6 −0.017560 134.4 0.975 0.988

1P0(2) 6 (0, 0)−7 −0.016150 149.3 0.983 0.996
1P0(3) 6 (3, 1)+

6 −0.016037 118.1 0.902 0.933
1P0(4) 6 (1, 1)+

7 −0.015307 134.6 0.930 0.986

N = 7 1P0(1) 7 (1, 1)+
7 −0.013109 138.2 0.971 0.988

1P0(2) 7 (3, 1)+
7 −0.012202 123.2 0.904 0.937

1P0(3) 7 (0, 0)−8 −0.012103 151.8 0.979 0.996
1P0(4) 7 (1, 1)+

8 −0.011529 138.3 0.902 0.985

N = 8 1P0(1) 8 (1, 1)+
8 −0.010158 141.3 0.967 0.987

1P0(2) 8 (3, 1)+
8 −0.009578 127.3 0.902 0.939

1P0(3) 8 (0, 0)−9 −0.009417 153.9 0.974 0.996
1P0(4) 8 (1, 1)+

8 −0.009013 141.2 0.868 0.979

N = 9 1P0(1) 9 (1, 1)+
9 −0.008103 143.8 0.962 0.987

1P0(2) 9 (3, 1)+
9 −0.007711 130.7 0.898 0.938

1P0(3) 9 (0, 0)−10 −0.007541 155.6 0.968 0.996
1P0(4) 9 (5, 1)+

9 −0.007263 120.9 0.776 0.828

N = 10 1P0(1) 10 (1, 1)+
10 −0.006615 145.9 0.956 0.986

1P0(2) 10 (3, 1)+
10 −0.006338 133.5 0.892 0.937

1P0(3) 10 (0, 0)−11 −0.006178 157.0 0.963 0.995
1P0(4) 10 (5, 1)+

10 −0.006025 124.2 0.779 0.834

N = 11 1P0(1) 11 (1, 1)+
11 −0.005503 147.7 0.950 0.985

1P0(2) 11 (3, 1)+
11 −0.005300 136.0 0.886 0.935

1P0(3) 11 (0, 0)−12 −0.005156 158.2 0.957 0.995
1P0(4) 11 (5, 1)+

11 −0.005074 127.1 0.776 0.834

N = 12 1P0(1) 12 (1, 1)+
12 −0.004650 149.3 0.943 0.985

1P0(2) 12 (3, 1)+
12 −0.004498 138.1 0.878 0.933

1P0(3) 12 (0, 0)−13 −0.004369 159.3 0.950 0.995
1P0(4) 12 (5, 1)+

12 −0.004329 129.5 0.770 0.832

N = 13 1P0(1) 13 (1, 1)+
13 −0.003981 150.7 0.936 0.984

1P0(2) 13 (3, 1)+
13 −0.003864 139.9 0.871 0.930

1P0(3) 13 (0, 0)−14 −0.003751 160.2 0.943 0.994
1P0(4) 13 (5, 1)+

13 −0.003735 131.7 0.763 0.829

N = 14 1P0(1) 14 (1, 1)+
14 −0.003447 151.9 0.929 0.983

1P0(2) 14 (3, 1)+
14 −0.003355 141.6 0.862 0.928

1P0(3) 14 (0, 0)−15 −0.003256 161.0 0.936 0.994
1P0(4) 14 (5, 1)+

14 −0.003255 133.7 0.756 0.826

N = 15 1P0(1) 15 (1, 1)+
15 −0.003015 153.0 0.922 0.982

1P0(2) 15 (3, 1)+
15 −0.002941 143.1 0.854 0.925

1P0(3) 15 (5, 1)+
15 −0.002861 135.4 0.748 0.822

1P0(4) 15 (0, 0)−16 −0.002853 161.7 0.929 0.993

N = 16 1P0(1) 16 (1, 1)+
16 −0.002659 154.0 0.914 0.982

1P0(2) 16 (3, 1)+
16 −0.002599 144.4 0.846 0.923

1P0(3) 16 (5, 1)+
16 −0.002534 137.0 0.739 0.818

1P0(4) 16 (0, 0)−17 −0.002521 162.4 0.922 0.993

N = 17 1P0(1) 17 (1, 1)+
17 −0.002362 154.9 0.907 0.981

1P0(2) 17 (3, 1)+
17 −0.002313 145.6 0.837 0.920

1P0(3) 17 (5, 1)+
17 −0.002260 138.5 0.731 0.814

1P0(4) 17 (0, 0)−18 −0.002244 163.0 0.914 0.993
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Table 2. Continued.

N(F, T )An E (a.u.) 〈θ12〉 P (KT ) P (FT )

N = 18 1P0(1) 18 (1, 1)+
18 −0.002113 155.7 0.899 0.980

1P0(2) 18 (3, 1)+
18 −0.002072 146.7 0.829 0.918

1P0(3) 18 (5, 1)+
18 −0.002028 139.8 0.722 0.809

1P0(4) 18 (0, 0)−19 −0.002011 163.5 0.907 0.992

N = 19 1P0(1) 19 (1, 1)+
19 −0.001901 156.4 0.891 0.979

1P0(2) 19 (3, 1)+
19 −0.001867 147.7 0.820 0.915

1P0(3) 19 (5, 1)+
19 −0.001830 141.0 0.713 0.805

1P0(4) 19 (0, 0)−20 −0.001812 164.0 0.899 0.992

N = 20 1P0(1) 20 (1, 1)+
20 −0.001720 157.1 0.883 0.979

1P0(2) 20 (3, 1)+
20 −0.001691 148.6 0.812 0.913

1P0(3) 20 (5, 1)+
20 −0.001660 142.1 0.704 0.801

1P0(4) 20 (0, 0)−21 −0.001642 164.5 0.891 0.992

N = 21 1P0(1) 21 (1, 1)+
21 −0.001564 157.7 0.876 0.978

1P0(2) 21 (3, 1)+
21 −0.001539 149.5 0.803 0.910

1P0(3) 21 (5, 1)+
21 −0.001512 143.1 0.696 0.797

1P0(4) 21 (0, 0)−22 −0.001494 164.9 0.884 0.991

N = 22 1P0(1) 22 (1, 1)+
22 −0.001428 158.3 0.868 0.977

1P0(2) 22 (3, 1)+
22 −0.001406 150.3 0.795 0.908

1P0(3) 22 (5, 1)+
22 −0.001383 144.0 0.687 0.793

1P0(4) 22 (0, 0)−23 −0.001366 165.3 0.876 0.991

N = 23 1P0(1) 23 (1, 1)+
23 −0.001309 158.8 0.860 0.977

1P0(2) 23 (3, 1)+
23 −0.001290 151.0 0.787 0.906

1P0(3) 23 (5, 1)+
23 −0.001270 144.9 0.679 0.789

1P0(4) 23 (0, 0)−24 −0.001254 165.6 0.868 0.991

N = 24 1P0(1) 24 (1, 1)+
24 −0.001204 159.3 0.853 0.976

1P0(2) 24 (3, 1)+
24 −0.001188 151.7 0.779 0.904

1P0(3) 24 (5, 1)+
24 −0.001171 145.7 0.670 0.785

1P0(4) 24 (0, 0)−25 −0.001155 166.0 0.861 0.990

N = 25 1P0(1) 25 (1, 1)+
25 −0.001112 159.8 0.845 0.975

1P0(2) 25 (3, 1)+
25 −0.001097 152.3 0.771 0.901

1P0(3) 25 (5, 1)+
25 −0.001082 146.5 0.662 0.781

1P0(4) 25 (0, 0)−26 −0.001067 166.3 0.853 0.990

strong mixings and the high density of states in the spec-
tra of DES, conjectural classifications are less revealing
than what is required of theory and computation.

3 Calculations

The calculations of the present work involved two phases:
in the first phase, the aim was to produce correlated wave-
functions and their energies, for a series of DES of H−
and He of 1P0 symmetry, which include single as well as
double virtual excitations from an intrashell multiconfig-
urational zero order reference space of each N manifold.
In the second phase, the energies and wavefunctions of
such calculations are employed for analysis of a part of

the DES spectra, up to N = 25. Focusing on the lowest
four states of each N manifold, which were obtained with
very good accuracy, both the (K,T ) and the (F, T ) clas-
sification schemes were explored, and was found that, in
fact, when electron correlation is computed well, the lat-
ter classification is the more appropriate one. These results
are accompanied by results on geometrical properties.

The first report of this type of analysis was published
in 1993 by Komninos et al. [3], where the focus was on the
TEIL states, and where N went up to 15. In this work this
theory is extended to the more difficult case of determining
additional states above the TEIL ones beyond the low
regime, by going up to N = 25. In what follows, we recall
the basic features of the approach of [3] and explain how
they relate to the present calculations.
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3.1 Configurations constructed from a hydrogenic
basis set

The state-specific theory of multiply states described
in [1,23] and in references therein, places emphasis on the
computation of a MCHF establishing localization in the
continuous spectrum via the solution of MCHF equations,
where the physically and computationally relevant config-
urations are included. Using this MCHF wavefunction as a
reference space, the remaining part of electron correlation
is added variationally. This method is numerically stable
when the level of excitation is in the low regime. However,
in the high regime, where the density of states and the
size of their wavefunctions, especially in H−, complicates
matters considerably, a reliable solution of the appropri-
ate MCHF equations is currently impossible. Neverthe-
less, the findings and conclusions reported in [3] justify
the present calculations, which used hydrogenic basis sets.
Specifically, natural orbitals which are obtained from basis
sets of hydrogenic orbitals, when used for the construction
of multiconfigurational intrashell DES produced energies
which were in agreement with those obtained from a basis
of self-consistent orbitals [3]. This finding, in conjunction
with the earlier results of Robaux [14] who used hydro-
genic basis sets and obtained meaningful results, was in-
terpreted as attributing validity to the systematic use of
hydrogenic basis sets for the calculation of diagonal matrix
elements of DES of higher N .

Therefore, in the present work, the basis orbitals were
hydrogenic and were computed numerically. In spite of
the slow convergence which results from the inability of
such orbitals to account for relaxation and screening, one
advantage from their use is the fact that one can follow
systematically the construction of properly symmetrized
configurations, Φi(γLSπ) = |nλn′λ′; 2S+1Lπ〉i, as well as
the stability of results as the size of the set increases. For
given n, n′, L and π all possible values of λ and λ′ can
be taken into account. The Φi(γLSπ) are used to compute
the Hamiltonian matrix, whose diagonalization yields the
eigenvalues Ev and eigenfunctions Ψv. The Ψv have the
form:

Ψv =
M∑

n,n′=N

c
(v)
n,n′

∣∣nλn′λ′; 2S+1Lπ
〉
· (2)

Theoretical considerations and computational experience
show that the hole-filling configurations representing se-
ries whose beginning is below the lowest state of the N
manifold with n, n′ = 1, ..., N−1 should be excluded from
the expansion. The exclusion of all hydrogenic configura-
tions with n < N or n′ < N is necessary for obtaining
well-converged and meaningful results.

For eachN , doubly excited configurations with orbitals
up to N+3 were also included. Specifically, all hydrogenic
product functions have been included in which one of the
electrons is represented by a nλ function, N ≤ n ≤ N + 3
and the other electron can have any radial quantum num-
ber n′, n ≤ n′ ≤ N + 3. Even with the above choices, it is
possible to have Ψv energetically degenerate with Rydberg
series or with scattering continua of lower-lying hydrogen

thresholds. The results of Robaux [14] as well as ours, to-
gether with conclusions from the study of the magnitude
of off-diagonal matrix elements, (very small, decreasing
with excitation), support the assumption that inclusion
of such channels is unwarranted as regards the determina-
tion of the energies of low-lying states of each N manifold
and of their geometrical properties.

The number of hydrogenic configurations used in our
final calculations varied from 100 for N = 6 to 404 forN =
25. These numbers were found to produce stable results for
the four lowest roots at each N manifold. Because of the
CI nature of the calculation, accuracy is expected to be
higher for the lowest root of the intrashell type, (F, T ) =
(1, 1), and of the intershell type, (F, T ) = (0, 0).

3.2 Projection of the Ψv on the DESB

The use of group theory and of approximate quantum
numbers for the labeling and description of DES, was
initiated by Wulfman in 1968 [31], albeit without suc-
cessful results. In 1973, Wulfman [32] and Sinanoğlu and
Herrick [15,16], independently, proposed the now well-
known novel schemes of approximate diagonalization of
DES and of new quantum numbers which classify such
states in a way that describes some effects of electron cor-
relation. This approach was further advanced by Herrick
and coworkers [20,21], producing a wealth of semiquanti-
tative descriptions and classifications. At the core of this
development, and the basis for a number of applications
by Herrick and Sinanoğlu and by other researchers since
then, is the DESB, which is defined in terms of hydrogenic
functions and is labeled by corresponding good numbers,
P andQ, as defined by Wulfman [32], orK and T , as intro-
duced by Herrick and Sinanoğlu, [15,16,20,21]. The DESB
vector is a superposition of vectors |nλn′λ′; 2S+1Lπ〉i
with coefficients determined algebraically. They are given
as [15,16,21]

Φ
(DESB)
Nn

(
KT ; 2S+1Lπ

)
=
∣∣NnKT 2S+1Lπ

〉
=
∑
λ1λ2

DKTLπ
Nλ1nλ2

∣∣Nλ1nλ2; 2S+1Lπ
〉

(3)

where DKTLπ
Nλ1nλ2

is proportional to a 9-j vector coupling
coefficient.

The numbers (K,T ) are used to label DES. States hav-
ing the sameN , K and T form a Rydberg series. Although
n is not a good number, in general, it corresponds to the
highest component DKTLπ

Nλ1nλ2
for the lowest states of the

series. For each value of L, T is restricted to the integers
0, 1, ..., min(L,N − 1) and µK = N − T − 1, N − T − 3,
..., 1 or 0. Moreover if π = (−1)L+1, then T > 0. K is
proportional to 〈r< cos θ12〉, where r< refers to the inner
electron. For different series, cosθ12 is in general negative
if K > 0, and positive if K < 0. Hence, a positive value
of K is taken to correspond to the electrons being on op-
posite sides of the ionic core, thereby decreasing repulsive
interaction. On the other hand, a negative value of K cor-
responds to electrons being on the same side of the core.
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In this case, repulsion is stronger and the energies of these
states is higher.

The evaluation of the exactness of the approximate
quantum numbers K and T is done by projecting the vari-
ationally calculated wavefunctions Ψv of equation (2) onto
the DESB function of equation (3):〈

Ψv

∣∣∣Φ(DESB)
nn′ (KT )

〉
=
∑

c
(v)
nn′D

KT
nln′l′ = αv(nn′ : KT ).

(4)

The sum:

Pv(KT ) =
∑
n,n′

[αv(nn′ : KT )]2 (5)

gives the fraction of the contribution to Ψv of DESB func-
tions with common K and T . The characterization of a
DES by individual K and T numbers is done by selecting
the largest scalar product in the sum of equation (5).

For the DES of 1P0 symmetry, T = 1 for the intrashell
DESB states (N = n), and T = 0 or 1 for the intershell
DESB states (N 6= n). Therefore, the 1P0 DES offer the
opportunity of testing whether T is a good number. The
numerical results of [3] showed that for the TEIL DES up
to N = 15, T is a good number. However, the N and the
K are not good numbers even for the TEIL states, los-
ing accuracy as excitation energy increases and Coulomb
attraction decreases.

3.3 The FT classification scheme

The degree of the goodness of the DESB wavefunctions
for low-lying DES, i.e. of the |K,T,N, n;L, S, π〉 repre-
sentation, was studied by Lin and Macek [28], by com-
paring them to configuration-interaction (CI) wavefunc-
tions which had been computed by Lipsky, Anania and
Conneely [33] using hydrogenic basis sets. They concluded
that the DESB approximation “emphasizes angular cor-
rrelations and underrepresents radial correlation” (p. 2317
of [28]), and that “for some series they give accurate rep-
resentations but not for others” (p. 2321 of [28]).

Komninos et al. [3] recognized that even in the case
of the well-correlated TEIL states, the (K,T ) eventually
breaks down as N increases, and that the cause of this
breakdown is the neglect of the double excitations which
is intrinsic to the model. They also reported the results of
preliminary calculations, which have now been extended
and completed, according to which: “For the other in-
trashell states of each N-manifold, matters deteriorate for
lower values of N” (p. 405 of [3]). As a remedy to this fact,
Komninos et al. [3] proposed that instead of K, a combi-
nation of K and N should be used, where now, neither K
nor N are good numbers. (T remains a “good” number.)
Indeed, the choice of F , given by equation (1), in conjunc-
tion with well-correlated wavefunctions, has shown that
the F, T scheme does better.

F depends on N and K but we do not relate this num-
ber to DESB functions directly. The range of F is

T ≤ F ≤ 2N − 2− T, in steps of 2. (6)

In this representation, the wavefunction of a DES is writ-
ten as

ΨNn
(

2S+1Lπ
)
≈
∑
n1n2

cn1n2Φn1n2

(
FT ; 2S+1Lπ

)
(7)

whereN ≤ n1 ≤ n2. This formal expansion is by construc-
tion more accurate, since it includes single and double ex-
citations from a single DESB function. Perturbation the-
ory shows that using wavefunctions containing only single
excitations cannot be reliable, especially for excited states
where strong mixings is the rule.

It is important to note that whereas the DESB vectors
are the same for all Z, the FT ones are not. The quality
of the (F, T ) classification scheme depends on the system
and on the level of excitation and can be investigated by
numerical calculations.

The projection of the wavefunction Ψv onto the FT
vectors is done formally by a summation of the squared
coefficient αv(nn′ : KT ) for all triplets of n, n′ and K,
which give a common value for the quantum number F :

Pv(FT ) =
∑
k,n,n′

[αv(nn′ : (K = N − F − 1)T )]2 . (8)

The evaluation of the degree of goodness of T is done sim-
ply by selecting the individual contributions of all allowed
values. This procedure is applied for all values of K or F .

In classifying our results, we have also used the
Herrick-Lin number A [9,21], defined by

A =
{
π(−1)S+T if K > L−N

0 if K ≤ L−N · (9)

A is not independent of K and T and can take the value
+1 (−1) or 0, depending on the presence or absence of
a node (antinode) at r1 = r2. For intrashell states A is
always unity. We will follow, as do other workers, the no-
tation N (K,T )An for a state in a series, with the quantum
number n of the outer electron starting from N or N + 1,
depending on the series.

3.4 Mean values and geometry

The possibility of a better understanding of DES is con-
nected to the possibility of acquiring quantitative infor-
mation about the correlated motion of the electrons. Main
characteristics of this motion are revealed by probability
densities and average values. In this regard, the calculation
of the correlated 〈r1〉 and 〈r2〉 under the assumption that
the two electrons occupy approximately the same region,
is done by using the expressions [1]

〈r1〉 =
∫∫∫

ρ (r1, r2, cos θ12) r1 sin θ12dr1dr2dθ12

(10a)

〈r2〉 |r1=〈r1〉 =
∫∫

ρ (〈r1〉, r2, cos θ12) r2 sin θ12dr2dθ12∫∫
ρ (〈r1〉, r2, cos θ12) sin θ12dr2dθ12

·

(10b)
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ρ(r1, r2, cos θ12) is the exact electron density of the state of
interest and ρ(〈r1〉, r2, cos θ12) is the density that results
if r1 is fixed at the average value 〈r1〉 and the angular
dependence on θ12 is integrated.

We have also computed 〈cos θ12〉, and have compared
the results to those obtained from the application of the
DESB formula for intrashell states [21]

〈cos θ12〉DESB =
4N2− 3(N +K)2− 3T 2+ 2L(L+ 1)− 1

8N2
·

(11)

For the ab initio calculation with the correlated wavefunc-
tions, we used

〈cos θ12〉 =
∫∫∫

ρ (r1, r2, cos θ12) cos θ12 sin θ12dr1dr2dθ12.

(12)

The problem of the calculation of the interelectronic an-
gle θ12 in the general case of polyelectronic atomic states
was solved by Komninos and Nicolaides [23] by proving
a connection to Rk integrals obtained from the electronic
structure of the state. The present case is simple, and so
ρ(cos θ12) can be calculated straightforwardly. The mean
value 〈θ12〉 is calculated as 〈θ12〉 = cos−1〈cos θ12〉.

4 Results

Our results are given in Tables 1–6 and in Figures 1–6.
The information which is contained in them pertains to
energies, to classification based on the schemes of (K,T )
and (F, T ) and to geometries based on the averages of the
angle θ12 and of the radii.

4.1 Energies

Tables 1 and 2 contain, together with other essential re-
sults of our calculations, the energies for He and for H−.
For each manifold up to N = 25 we obtained data for
the lowest four states of 1P0 symmetry, which are labeled
by the F, T numbers, in addition to N , n, and A. The
number four was deemed sufficient to deduce useful con-
clusions, apart from the value of knowing the positions
of a large number of hitherto unknown DES that are in
principle reachable via photoabsorption of the 1S ground
state.

We already stated in Section 3.1 the method of cal-
culation and of inclusion of virtual configurations. At the
end of the section, in Section 4.4, we present the results
of a typical convergence study, using the N = 23 1P0 low-
est DES of H−. (Convergence for neutral and positive ion
DES is always easier.)

The positions of the TEIL states are presented in Fig-
ure 1 (He) and Figure 2 (H−) together with positions of
the hydrogenic levels. As excitation increases, more and
more hydrogen thresholds come below the energies of the
TEIL states. If widths were to be computed by an all-
orders theory, this fact implies the addition of considerable

complexity before an understanding toward the accurate
calculation of widths of DES in the regime of high excita-
tion can be. In this respect, we cite the work of Bylicki and
Nicolaides [34] on the resolution of the resonance spectra
of H− below the n = 5 hydrogenic threshold, for an eval-
uation of the demands that such calculations would have
when the high regime region is examined.

The validity of the calculations as regards the accu-
racy of the energies, apart from the internal consistency
and convergence tests that were applied, is confirmed by
the favorable comparison with results of other advanced
methods which are available for the regime of low exci-
tation, up to N = 13 (Tabs. 3 and 4). It is this type of
accuracy that characterizes all the energies computed in
this work, for 80 states for H− and for He up to N = 25.
We point out that even for the low regime a large number
of new energy levels are presented here.

As regards the He spectrum, when N = 6–9 the fourth
root represents an intershell state, with the assignment of
F = 0 and T = 0. Geometrical characteristics of this state,
as well as those of other states, are analyzed in the follow-
ing subsections. Starting at N = 10 up to N = 25, the
lowest four roots represent intrashell states with T = 1.
On the other hand, in H− the (0, 0) intershell state starts
from the second position for N = 6, stays in the third
position for N = 7 to N = 14, and moves to the fourth
position for N = 15 up to 25. This is in harmony with
a general behavior of low-lying spectra in polyelectronic
atoms: as Z decreases and the relative importance of in-
terelectronic repulsion and correlation increases, Rydberg
states come below valence states. In the present cases,
the observed behavior is a manifestation of the changes in
screening, (less when excitation of both electrons is high),
and of the relative strengths of the contribution of the
three parts of the energy operator (kinetic energy, nuclear
attraction and electron repulsion).

4.2 Classification

In Tables 1 and 2, the effectiveness of the (K,T ) and (F, T )
schemes in providing high purity states is compared. It
is clear that the (F, T ) scheme expresses the character
of the DES better, in both the intrashell, T = 1, and
the intershell, T = 0, cases. In fact, for the TEIL states,
the (F, T ) representation remains rather good even up to
N = 25, whereas the (K,T ) one deteriorates significantly.
These facts are depicted in a clear way with the example
of Figure 3, where we have plotted the purity coefficients
of the lowest intrashell DES, (F, T ) = (1, 1), (the TEIL
state), and of the lowest intershell DES, (F, T ) = (0, 0) of
H−, as a function of N .

In Tables 5 and 6, the content of (F, T ) character for
the states N = 6, 10, 15, 20 and 25 is presented. Due
to symmetry, for intershell states T can have two val-
ues, T = 0 and 1. Therefore, they offer the opportunity
of testing the goodness of T , since some of the states in
our calculation exhibit intershell character (see the subsec-
tion on geometry below). Our calculations show that T is
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Table 3. Comparison of the present results for the energies of some H− low-lying DES with available results from the literature.

State (a) (b) (c) (d) (e) (f) (g)

N = 6 1P0(1) −0.017560 −0.017434 −0.01752 −0.0170 −0.017375 −0.01739 −0.017333
1P0(2) −0.016150 — — −0.01609 —
1P0(3) −0.016037 — −0.01589 −0.01564 —
1P0(4) −0.015307 −0.01537 −0.015255 −0.01525

N = 7 1P0(1) −0.013109 −0.013017 −0.01298 −0.0127 −0.01293 −0.01299 −0.012877
1P0(2) −0.012202 — −0.012025 — —
1P0(3) −0.012103 — −0.01206 —
1P0(4) −0.011530 −0.01156 −0.01152 −0.011289

N = 8 1P0(1) −0.010158 −0.010086 −0.01009 −0.00990 −0.010017
1P0(2) −0.009578 — —
1P0(3) −0.009417 — —
1P0(4) −0.009013 −0.00905 −0.008803

N = 9 1P0(1) −0.008103 −0.008045 −0.00802 −0.00791

N = 10 1P0(1) −0.006615 −0.00653 −0.00647

N = 11 1P0(1) −0.005503 −0.00542 −0.00539

N = 12 1P0(1) −0.004650 −0.00456 −0.00455

N = 13 1P0(1) −0.003981 −0.00390

(a) This work, (b) Nicolaides and Komninos, reference [2], (c) Sadeghpour and Greene, reference [8], (d) Rost and Briggs,
reference [10], (e) Ho, reference [29], (f) Koyama, Takafuji and Matsuzawa, reference [7], (g) Harris et al., reference [36],
experiment.

Table 4. As in Table 3, for He.

State (a) (b) (c) (d) (e) (f) (g)

N = 6 1P0(1) −0.089021 −0.088984 −0.08924 −0.0867 −0.0886 −0.08888 −0.088603
1P0(2) −0.085019 −0.08330 — −0.084825
1P0(3) −0.079875 — −0.079999
1P0(4) −0.079599 −0.0795 −0.079516

N = 7 1P0(1) −0.065903 −0.065871 −0.06612 −0.0644 −0.06645 −0.065509
1P0(2) −0.063569 −0.06243 — −0.063276
1P0(3) −0.060682 — −0.060473
1P0(4) −0.059602 −0.05975 −0.059511

N = 8 1P0(1) −0.050743 −0.050714 −0.05113 −0.0498
1P0(2) −0.049271 −0.04842

N = 9 1P0(1) −0.040271 −0.040247 −0.04040 −0.0396
1P0(2) −0.039286 −0.03888

N = 10 1P0(1) −0.032737 −0.032718 −0.03289 −0.0323

N = 11 1P0(1) −0.027136 −0.0268

N = 12 1P0(1) −0.022860 −0.0226

N = 13 1P0(1) −0.019522 −0.0193

(a) This work, (b) Komninos and Nicolaides, reference [2], (c) Sadeghpour, reference [8], (d) Rost and Briggs, reference [10],
(e) Ho, reference [37], (f) Koyama, Takafuji and Matsuzawa, reference [7], (g) Rost, Schultz, Domcke and Kaindl, reference [38].
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Table 5. FT character of H− DES states of 1P0 symmetry at selected N manifolds up to N = 25. F, T remain good as N
increases not only for the TEIL state but also for the lowest intershell state (0, 0). Note that the (0, 0) state is the second root
at N = 6 and the fourth one at N = 25. Compared to He, in H− the (F, T ) scheme loses accuracy faster as N increases. States
marked by (•) have a small contribution from other FT vectors not shown here.

(F, T )

(1, 1) (3, 1) (5, 1) (7, 1) (0, 0) (2, 0) (4, 0) (6, 0)

N = 6 1P0(1) 98.76 1.20 0.02 0.02
1P0(2) 0.02 99.64 0.34
1P0(3) 1.21 93.33 5.18 0.19 0.06 0.01
1P0(4) 98.61 1.09 0.03 0.01 0.24

N = 10 1P0(1) 98.62 1.36 0.02
1P0(2) 1.24 93.68 4.91 0.15 0.01
1P0(3) 99.52 0.47
1P0(4) • 0.05 4.71 83.37 11.08 0.02

N = 15 1P0(1) 98.23 1.74 0.03
1P0(2) 1.66 92.52 5.62 0.19
1P0(3) • 0.03 5.40 82.18 11.63
1P0(4) 99.34 0.65

N = 20 1P0(1) 97.86 2.10 0.04
1P0(2) 2.05 91.26 6.45 0.24
1P0(3) • 0.04 6.28 80.08 12.71
1P0(4) 99.16 0.83

N = 25 1P0(1) 97.54 2.41 0.05
1P0(2) 2.37 90.15 7.18 0.29
1P0(3) • 0.05 7.05 78.10 13.76
1P0(4) 99.01 0.98 0.01

Table 6. As in Table 5, for He. F deteriorates slowly from the lowest to the fourth intrashell (T = 1) state, especially for
high N , where radial correlation acquires relatively more importance. The TEIL state (lowest energy) keeps a rather good FT
character all the way up to N = 25.

(F, T )

(1, 1) (3, 1) (5, 1) (7, 1) (0, 0) (2, 0) (4, 0) (6, 0)

N = 6 1P0(1) 99.72 0.26
1P0(2) 0.04 98.33 1.56 0.02 0.01 0.03
1P0(3) • 0.01 0.89 92.83 5.85 0.01 0.14
1P0(4) 0.03 99.90 0.07

N = 10 1P0(1) 99.76 0.23
1P0(2) 0.10 98.72 1.15 0.01
1P0(3) • 0.73 95.63 3.55 0.02
1P0(4) • 0.01 2.65 88.53

N = 15 1P0(1) 99.62 0.38
1P0(2) 0.30 98.18 1.51 0.02
1P0(3) • 1.25 94.85 3.81
1P0(4) • 0.01 3.26 88.70

N = 20 1P0(1) 99.39 0.60
1P0(2) 0.54 97.31 2.12 0.03
1P0(3) • 1.94 93.12 4.82
1P0(4) • 0.03 4.44 86.29

N = 25 1P0(1) 99.14 0.85 0.01
1P0(2) 0.81 96.35 2.80 0.05
1P0(3) • 2.66 91.17 5.98
1P0(4) • 0.05 5.70 83.31
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Fig. 1. Comparison of the energies of the He TEIL states with the hydrogenic thresholds. The crossing of a lower hydrogenic
threshold starts with N = 5, which is below the n = 4 He+ threshold (not shown here). As (N,n) increase, the TEIL state for
each N is found below many hydrogenic thresholds.

Fig. 2. Same comparison as in Figure 1, for the H− states.

a good number for all the studied states. Mixing of con-
figurations having different values of T is negligible.

Tables 5 and 6 show that mixing of the various (F, T )
vectors is very small. Each 1P0 state is characterized by
a specific (F, T ) combination. Not only the TEIL state,
which is the lowest intrashell state, but also the lowest
intershell state, which is labeled by (0, 0), keep high purity
for all N . In general, the (F, T ) label is less accurate in
H− than in He, as N increases.

4.3 Geometry

The geometrical features of the (F, T ) states were obtained
from the expectation values of the angle θ12 and of the
radii. These are presented in Figures 4–6 for 〈θ12〉 and
in Figure 7 for the radii. The numerical values of 〈θ12〉
are given in Tables 1 and 2. In addition, the results ob-
tained for the DESB states, which are Z-independent, are
plotted in the figures. For the intrashell states, Herrick’s
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Fig. 3. (K,T ) and (F, T ) purity coefficient for the lowest 1P0 intrashell DES, (F, T ) = (1, 1) and for the lowest 1P0 intershell
DES, (F, T ) = (0, 0) of H−, as a function of the hydrogenic manifold number N . Their calculation was done in terms of the CI
wavefunctions described in the paper, and equations (5, 8).

formula (11) was used. For the (F, T ) = (0, 0) state, which
is of the intershell (N,N +1) type, the formula for the av-
erage of the angle was obtained as

〈cos θ12〉DESB =
−4N3 + 6N2 − 2
(N + 1)(2N − 1)2

· (13)

Formula (13) was derived from the formula (A15) of de
Prunelé [35] for L = 1, which is applicable to the case of
T = 0.

The results for 〈θ12〉 are consistent, systematic and re-
vealing. The lowest state, (1, 1), which is the TEIL state,

has the largest angle of the intrashell states. This reflects
the fact that as electron correlation is reduced for the
higher-lying states, the interelectronic angle is reduced as
well. The ab initio angle is a bound from above to the
DESB result and tends to 180◦ as N goes to infinity. If
this feature is combined with findings for the average radii
of Figure 6, which shows that 〈r1〉 ∼ 〈r2〉|r1=〈r1〉 is satis-
fied not only for the TEIL state but for the other two
intrashell states as well, we obtain a good picture of the
trends in the geometry of such DES.
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Fig. 4. Mean value 〈θ12〉 of the interelectronic angle of 1P0 res-
onances of He and H−, having (F, T ) = (1, 1). DESB values are
calculated by the formula (11). For TEIL states, electron cor-
relation is more important in H−. Therefore, already at low N ,
the angle is larger than that of He and of the DESB state. All
tend to 〈θ12〉 = 180◦.

Fig. 5. Same as Figure 3 for the states with (F, T ) = (3, 1).
The second intrashell state starts from smaller values than the
Wannier TEIL ones and remain so up to N = 25.

On the other hand, the state (0, 0) exhibits the inter-
shell character in Figure 6, and has a higher value than
that of the intrashell states for the angle along the whole
ladder of N .

Note that in all cases, the DESB results underestimate
the opening of the angle, especially in H− where electron
correlation is more important.

4.4 Convergence

Finally, in Table 7 we present a typical set of results con-
cerning convergence as a function of inclusion of singly

Fig. 6. Mean value 〈θ12〉 of the interelectronic angle of the
lowest 1P0 intershell state of H−, having (F, T ) = (0, 0). The
intershell DESB calculation was done from formula (13).

Fig. 7. Ratio of the mean values 〈r1〉 and 〈r2〉|r1=〈r1〉 of the
lowest four 1P0 resonances of H−, at each threshold. The in-
trashell and the intershell character of states having T = 1 and
T = 0 respectively, is clear.

and doubly excited configurations with n higher than the
reference manifold. The example is taken from the calcu-
lation on the N = 23 states of H−. Convergence for the
lowest tree roots is well achieved when n exceeds N by
two. For the fourth state the accuracy is slightly less.

5 Conclusion

A critical reading of the theories and their results which
have been published during the past few decades on the
subject of DES should reveal to the interested reader that
an open and challenging issue has been the possibility of
applying quantum mechanics to the calculation of highly
excited such states. In the work reported in this paper
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Table 7. Convergence of the energy of the four lowest states of the manifold N = 23 of H−, as the number of singly and doubly
excited hydrogenic configurations increases, with n′ higher than N (see Eq. (2)).

N(F, T )An�n′ 23 24 25 26 27

23 (1,1)+
23 −0.001169 −0.001306 −0.001309 −0.001309 −0.001309

23 (3,1)+
23 −0.001132 −0.001286 −0.001290 −0.001290 −0.001290

23 (5,1)+
23 −0.001090 −0.001265 −0.001270 −0.001270 −0.001270

23 (0,0)−24 −0.001045 −0.001243 −0.001249 −0.001254 −0.001254

on the properties of 1P0 DES in He and in H− up to
N = 25, we demonstrated that practical calculations of
well-correlated wavefunctions are possible in the regime
of high N , defined here as N > 15. The calculations re-
vealed a wealth of new data, for 80 1P0 DES of H− and
80 1P0 DES of He, whose systematic analysis led to reli-
able conclusions regarding classification schemes, energies
and geometries.

The predictions of energies are verifiable, in principle,
via high resolution measurements of photoabsorption from
the 1S ground state.

An examination of the validity of the (K,T ) classifica-
tion scheme was carried out, as a function of excitation,
for the lowest four localized solutions of each manifold N .
Given that the correlated wavefunctions include single as
well as double virtual excitations from the intrashell zero
order reference space of each N , it was established that
K loses accuracy as N increases. Instead, a more general
number, F , whose numerical value is N − K − 1, where
N and K are not “good” numbers, represents each state
more faithfully. Since F is numerically equal to the Herrick
“rovibrational” quantum number v, also appears in the
approximate molecular orbital model of [10], our results
on the goodness of the (F, T ) scheme provide a quantita-
tive justification of the decoupling assumptions particular
to this model.

Similar calculations are possible for higher excitations
as well as for other symmetries. As regards the latter, of
interest would be the evaluation of the degree of validity
of the (F, T ) scheme in DES with L = D, F etc.
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